Mobility Analytics Blog

StreetLight Data Blog

The latest news about Big Data and mobility analytics.

Blog Feature

Big Data  |  Transportation  |  public transit

Big Data and Public Transit: Measuring Vehicle Trips to Help Modeshift

Public transit is a key component of cities’ mobility networks, especially in dense urban centers. Trains and buses help commuters avoid the hassle of traffic jams on congested roadways, not to mention pricey parking. But some cities are attracting commuters and residents so quickly that public transit cannot keep up -- just ask anyone who lives in Denver, Colorado.

The population in Denver has grown by ~45% since 1996, and the average commuter there now spends 49 hours per year sitting in traffic, but only 4.4% of commuters use public transit (Source: Denver Post). Similar scenarios are playing out across the US in cities like Austin, Seattle, San Francisco, and more. Even though alternatives to driving are available in many of these growing cities, not enough commuters are using them – and congestion keeps getting worse.

Traditionally, public transit planners improve systems by looking at existing transit users’ behavior. They identify potential users as those who live and work near transit stations. But in this era of rapid urban population growth, we cannot consider these groups alone: What about the people who are driving because transit isn’t currently a viable option? What about the people who could be using the transit to commute, but aren’t? In this blog post, I’ll walk you though a few ways Big Data can help address these questions.

Read More

Blog Feature

Big Data  |  Case Studies  |  Transportation

Minnesota Department of Transportation Taps StreetLight Data to Bring New Traffic Intelligence to Everything From the Super Bowl to the Minnesota State Fair

We’re excited to share that StreetLight Data has a new public agency partner: Minnesota Department of Transportation (MnDOT). The agency recently signed up for a one-year pilot of our Regional Subscription to StreetLight InSight®, the first online platform that turns Big Data from mobile devices into transportation Metrics.

MnDOT’s Regional Subscription provides designated users with unlimited access to StreetLight InSight for Metrics in the state of Minnesota (and a buffer area). That means MnDOT’s Regional Subscription users can design and run as many StreetLight InSight transportation studies as desired to during their subscription term – without any incremental costs or additional procurement processes.

Read More

Subscribe to the StreetLight Data Blog.

Get the latest news about Big Data and mobility analytics for the transportation, retail, and real estate industries.

Blog Feature

Big Data  |  Mobile  |  Software Updates

How We Doubled Our Sample Size in One Year

We just passed our one-year anniversary of using Location-Based Services (LBS) data, so we decided to update some key sample size figures. The results are exciting: Our sample size has doubled to more than 62 million devices in the US and Canada in the past year. In other words, now our analytics anonymously describe the travel behavior of 23% of the US and Canadian adult population.

There are many reasons for this increase, including our main LBS data partner, Cuebiq, doing a great job. However, the most important reason is that Location-Based Services are becoming more and more widely adopted by consumers. As a result, our clients can now analyze the aggregate travel patterns of nearly ¼ of the population in just a few mouse clicks.

That’s a large sample by any measure, but when you consider the “status quo” methods of collecting travel behavior data, it’s even more dramatic. Imagine how much it would cost – and how long it would take – to collect household travel surveys from 62 million people, or to install sensors and traffic counters on the roads they use every day. It just wouldn’t be feasible. In this blog post, I’ll explain how we calculate sample size (hint: accuracy is more important to us than flashiness) and why it’s grown so much in just one year.

Read More

Blog Feature

Big Data  |  Case Studies  |  Transportation

Ohio DOT Selects StreetLight Data and INRIX for On-Demand Mobility Intelligence

Ohio Department of Transportation (ODOT) recently selected StreetLight Data to provide on-demand transportation studies along with one of our partners, INRIX. We’re thrilled to see ODOT join the hundreds of public agencies across the US and Canada that benefit from our Big Data analytics. 

Read More

Blog Feature

Big Data  |  Location-Based Services  |  Transportation

Real-World Travel Patterns: Who Works on Labor Day?

The Labor Day public holiday celebrates American workers by giving them the day off – or at least, that’s the idea.  Here at StreetLight Data, we wanted to find out how many American workers are still commuting to their jobs on Labor Day. The results were surprising: Only about ~56% of American workers get the day off nationwide, with some variation in results across different states. In this blog post, we’ll walk you through our analysis of Labor Day travel patterns.

Read More

Blog Feature

Big Data  |  Traffic

Why Big Data Matters for Traffic Congestion Studies

Traffic congestion negatively effects the economy, roads and our quality of life. Some people tend to blame pass-through trips, commercial attractions or employers, but expectations don’t always line up with hard data about what really causes congestion.

In California’s Napa County, for example, it is common to blame traffic on wine-tasting tourists. However, when planners used Big Data to map out travel behavior in traffic congestion studies, they found out that commuters actually contributed as much to congestion as tourists. High housing costs in Napa are a major part of the problem.

It’s not easy to figure out why congestion happens, especially in downtown districts. Learn how to improve the accuracy of your traffic congestion studies by using analytics derived from Big Data.

Read More